Lesson No 02

Accumulator

There is a central register in every processor called the accumulator. Traditionally all mathematical and logical operations are performed on the accumulator. The word size of a processor is defined by the width of its accumulator. A 32bit processor has an accumulator of 32 bits.

Pointer, Index, or Base Register

The name varies from manufacturer to manufacturer, but the basic distinguishing property is that it does not hold data but holds the address of data. The rationale can be understood by examining a “for” loop in a higher level language, zeroing elements in an array of ten elements located in consecutive memory cells. The location to be zeroed changes with every iteration. That is the address where the operation is performed is changing. Index register is used in such a situation to hold the address of the current array location. Now the value in the index register cannot be treated as data, but it is the address of data. In general whenever we need access to a memory location whose address is not known until runtime we need an index register. Without this register we would have needed to explicitly code each iteration separately.

In newer architectures the distinction between accumulator and index registers has become vague. They have general registers which are more versatile and can do both functions. They do have some specialized behaviors but basic operations can be done on all general registers.

Flags Register or Program Status Word

This is a special register in every architecture called the flags register or the program status word. Like the accumulator it is an 8, 16, or 32 bits register but unlike the accumulator it is meaningless as a unit, rather the individual bits carry different meanings. The bits of the accumulator work in parallel as a unit and each bit mean the same thing. The bits of the flags register work independently and individually, and combined its value is meaningless.

An example of a bit commonly present in the flags register is the carry flag. The carry can be contained in a single bit as in binary arithmetic the carry can only be zero or one. If a 16bit number is added to a 16bit accumulator, and the result is of 17 bits the 17th bit is placed in the carry bit of the flags register. Without this 17th bit the answer is incorrect. More examples of flags will be discussed when dealing with the Intel specific register set.

Program Counter or Instruction Pointer

Everything must translate into a binary number for our dumb processor to understand it, be it an operand or an operation itself. Therefore the instructions themselves must be translated into numbers. For example to add numbers we understand the word “add.” We translate this word into a number to make the processor understand it. This number is the actual instruction for the computer. All the objects, inheritance and encapsulation constructs in higher level languages translate down to just a number in assembly language in the end. Addition, multiplication, shifting; all big programs are made using these simple building blocks. A number is at the bottom line since this is the only thing a computer can understand.

A program is defined to be “an ordered set of instructions.” Order in this definition is a key part. Instructions run one after another, first, second, third and so on. Instructions have a positional relationship. The whole logic depends on this positioning. If the computer executes the fifth instructions after the first and not the second, all our logic is gone. The processor should ensure this ordering of instructions. A special register exists in every processor called the program counter or the instruction pointer that ensures this ordering. “The program counter holds the address of the next instruction to be executed.” A number is placed in the memory cell pointed to by this register and that number tells the processor which instruction to execute; for example 0xEA, 255, or 152. For the processor 152 might be the add instruction. Just this one number tells it that it has to add, where its operands are, and where to store the result. This number is called the opcode. The instruction pointer moves from one opcode to the next. This is how our program executes and progresses. One instruction is picked, its operands are read and the instruction is executed, then the next instruction is picked from the new address in instruction pointer and so on.

Remembering 152 for the add operation or 153 for the subtract operation is difficult. To make a simple way to remember difficult things we associate a symbol to every number. As when we write “add” everyone understands what we mean by it. Then we need a small program to convert this “add” of ours to 152 for the processor. Just a simple search and replace operation to translate all such symbols to their corresponding opcodes. We have mapped the numeric world of the processor to our symbolic world. “Add” conveys a meaning to us but the number 152 does not. We can say that add is closer to the programmer’s thinking. This is the basic motive of adding more and more translation layers up to higher level languages like C++ and Java and Visual Basic. These symbols are called instruction mnemonics. Therefore the mnemonic “add a to b” conveys more information to the reader. The dumb translator that will convert these mnemonics back to the original opcodes is a key program to be used throughout this course and is called the assembler.

1.1. Instruction Groups

Usual opcodes in every processor exist for moving data, arithmetic and logical manipulations etc. However their mnemonics vary depending on the will of the manufacturer. Some manufacturers name the mnemonics for data movement instructions as “move,” some call it “load” and “store” and still other names are present. But the basic set of instructions is similar in every processor. A grouping of these instructions makes learning a new processor quick and easy. Just the group an instruction belongs tells a lot about the instruction.

Data Movement Instructions

These instructions are used to move data from one place to another. These places can be registers, memory, or even inside peripheral devices. Some examples are:

mov ax, bx
lda 1234

Arithmetic and Logic Instructions

Arithmetic instructions like addition, subtraction, multiplication, division and Logical instructions like logical and, logical or, logical xor, or complement are part of this group. Some examples are:

and ax, 1234
add bx, 0534
add bx, [1200]

The bracketed form is a complex variation meaning to add the data placed at address 1200. Addressing data in memory is a detailed topic and is discussed in the next chapter.

Program Control Instructions

The instruction pointer points to the next instruction and instructions run one after the other with the help of this register. We can say that the instructions are tied with one another. In some situations we don’t want to follow this implied path and want to order the processor to break its flow if some condition becomes true instead of the spatially placed next instruction. In certain other cases we want the processor to first execute a separate block of code and then come back to resume processing where it left.

These are instructions that control the program execution and flow by playing with the instruction pointer and altering its normal behavior to point to the next instruction. Some examples are:

cmp ax, 0
jne 1234

We are changing the program flow to the instruction at 1234 address if the condition that we checked becomes true.

Special Instructions

Another group called special instructions works like the special service commandos. They allow changing specific processor behaviors and are used to play with it. They are used rarely but are certainly used in any meaningful program. Some examples are:

cli
sti

Where cli clears the interrupt flag and sti sets it. Without delving deep into it, consider that the cli instruction instructs the processor to close its ears from the outside world and never listen to what is happening outside, possibly to do some very important task at hand, while sti restores normal behavior. Since these instructions change the processor behavior they are placed in the special instructions group.

